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Abstract Changes in key drivers (e.g., climate, distur-
bance regimes and land use) may affect the sustainability
of forest landscapes and set the stage for increased tension
among competing ecosystem services. We addressed two
questions about a suite of supporting, regulating and
provisioning ecosystem services in each of two well-
studied forest landscapes in the western US: (1) How
might the provision of ecosystem services change in the
future given anticipated trajectories of climate, distur-
bance regimes, and land use? (2) What is the role of
spatial heterogeneity in sustaining future ecosystem
services? We determined that future changes in each
region are likely to be distinct, but spatial heterogeneity
(e.g., the amount and arrangement of surviving forest
patches or legacy trees after disturbance) will be
important in both landscapes for sustaining forest
regeneration, primary production, carbon storage, natural
hazard regulation, insect and pathogen regulation, timber
production and wildlife habitat. The paper closes by
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highlighting five general priorities for future research.
The science of landscape ecology has much to contribute
toward understanding ecosystem services and how land
management can enhance—or threaten—the sustainabil-
ity of ecosystem services in changing landscapes.
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Introduction

Many forested landscapes are changing rapidly in
response to changes in key social and ecological
drivers. Warming climate is altering forest productiv-
ity (e.g., Boisvenue and Running 2006; Huang et al.
2010) and the distribution of some tree species (e.g.,
Schrag et al. 2008; Lenoir et al. 2009, 2010). Climate-
induced changes in forest fire regimes and insect
outbreaks have been detected (Westerling et al. 2006;
Bentz et al. 2010; Wotton et al. 2010), and future
climate projections suggest that disturbance regimes
could change profoundly in coming decades (Flann-
igan et al. 2009; Wotton et al. 2010; Westerling et al.
2011). Change in land use is also ongoing. Forest
harvesting continues in many landscapes while slow-
ing in others, and exurban development—and thus the
extent of wildland-urban interface (Radeloff et al.
2005)—has increased, especially in forested
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landscapes with abundant environmental amenities
(e.g., Gude et al. 2006). Collectively, changing drivers
will alter landscape heterogeneity and likely set the
stage for increased tension among competing ecosys-
tem services (Johnstone et al. 2010; Turner 2010).

A pressing current need is to understand how
concurrent changes in climate, disturbance regimes
and land use will affect the resilience of forested
landscapes and the sustainability of ecosystem ser-
vices. By resilience, we mean the capacity of a system
to tolerate disturbance without shifting to a qualita-
tively different state that is controlled by a different set
of processes (Resilience Alliance 2012); i.e., the
ability of a system to retain its function, structure,
identity and feedbacks in the face of disturbance and
environmental change (Walker et al. 2004). By
sustainability, we mean use of the environment and
resources to meet current needs without compromising
the ability of system to provide for future generations;
here, we deal specifically with the capacity of the
system to deliver desired ecosystem services in the
face of human land use and a fluctuating environment,
now and in the future (Chapin et al. 2010).

Assessing, projecting and managing the flows of
ecosystem services across spatially heterogeneous
landscapes remain key challenges in sustainability
science (e.g., Carpenter et al. 2009). Ecosystem
services are the benefits people obtain from ecosys-
tems (Daily 1997; Daily et al. 2000; Millenium
Ecosystem Assessment [MEA] 2005), and they are
increasingly included in policy decisions related to
sustainability (National Research Council 2005; Daily
and Matson 2008; Carpenter et al. 2009; Daily et al.
2009). Several government programs in the USA (e.g.,
Environmental Protection Agency and US Department
of Agriculture) and in Europe now focus on manage-
ment of ecosystem services (e.g., Schroter et al. 2005).
Categories of ecosystem services are recognized
(supporting, regulating, provisioning and cultural;
Millennium Ecosystem Assessment 2005), and some
sets of ecosystem services called bundles—repeatedly
appear together across space or time (Raudsepp-
Hearne et al. 2010).

Anticipating future flows of ecosystem services is
daunting not only because the tempo of change is
accelerating for many key drivers, but also because
ecosystem services may interact in unexpected ways.
Synergies occur when multiple services respond to the
same drivers of change, or production of one
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ecosystem service enhances production of another
(Bennett et al. 2009; Raudsepp-Hearne et al. 2010).
Tradeoffs occur when the provision of one service is
reduced by increased use of another (Rodriguez et al.
2006). Sometimes tradeoffs result from direct inter-
actions (e.g., forest harvest reduces on-site carbon
storage directly; Hudiburg et al. 2009); in other cases,
tradeoffs may arise from spatial incompatibilities and/
or societal feedbacks (e.g., people may avoid living
near a clearcut forest site) (Raudsepp-Hearne et al.
2010). While some tradeoffs reflect explicit choices,
others arise without intent or even awareness that they
are taking place.

That landscape heterogeneity has myriad influences
on population dynamics, community structure, and
ecosystem processes is well known. Composition and
configuration affect the presence and abundance of
species (e.g., Newton et al. 2008, Prugh et al. 2008),
the composition of biotic communities (e.g., Dormann
et al. 2007), a variety of species interactions (e.g.,
Hebblewhite et al. 2005), and ecosystem processes
ranging from nutrient loading to surface waters (e.g.,
Strayer et al. 2003) to nutrient retention in terrestrial
landscapes (e.g., Bennett et al. 2005). Such strong
relationships between landscape heterogeneity and
ecosystem structure and function imply that spatial
heterogeneity will affect the sustainability of ecosys-
tem services, and thus landscape ecology can make
key contributions to sustainability science (e.g.,
Musacchio 2009; Cumming 2011). However, the role
of landscape heterogeneity in the provisioning of
ecosystem services or in amplifying or dampening
changes in ecosystem services has received little
attention.

In this paper, we explore how selected ecosystem
services that represent supporting, regulating and
provisioning services may change in coming decades,
with particular attention to the role of spatial hetero-
geneity in forested landscapes (Table 1). Using a
place-based, regional approach (Musacchio 2009) to
provide tangible context, we focus on two contrasting,
well-studied landscapes representative of broad swaths
of the western US: the Greater Yellowstone Ecosystem
(GYE) (northwestern Wyoming, USA), a continental-
interior forested landscape, and the coastal temperate
rainforest region of the Pacific Northwest (PNW)
(western Oregon and Washington, USA). For each
region we address two questions: (1) How might the
provision of ecosystem services change in the future
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given anticipated trajectories of climate, disturbance
regimes, and land use? (2) What is the role of spatial
heterogeneity in sustaining future ecosystem services?
We then conclude by identifying priorities for future
research on sustainability of landscapes in general,
emphasizing how the science of landscape ecology can
contribute to this growing field.

Ecosystem services in changing forest landscapes
The focal regions

The GYE is centered on Yellowstone National Park and
encompasses nearly 80,000 km? in northwestern Wyo-
ming, Montana and Idaho. Pre-Columbian flora and
fauna are largely intact, and fire and vegetation dynam-
ics have been well-studied (Romme and Despain 1989,
Whitlock et al. 2008). About 60 % of the GYE is
forested, dominated by conifers (e.g., Pinus contorta
var. latifolia, Picea engelmannii, Abies lasiocarpa,
P. albicaulis, Pseudotsuga menziesii). Fire-return inter-
vals have varied from approximately 100-300 years
throughout the Holocene and are largely driven by
climate (Whitlock et al. 2003, 2008; Millspaugh et al.
2004); vegetation feedbacks (i.e., fuel controls) have
played a lesser role (Millspaugh et al. 2000; Higuera
etal. 2010). Native bark beetles are also a key element of
this system (Furniss and Renkin 2003), with extensive
outbreaks since the 2000s (Simard et al. 2012). Recent
studies suggest that spring-summer temperatures may
be 4.5-5.5 °C warmer by mid-century, and the fire
rotation (i.e., time required to burn the area equivalent to
a focal landscape) may decrease to <30 years (Wester-
ling et al. 2011).

The GYE is largely undeveloped (Fig. 1a), but land
use is still important. Forest harvesting on the national
forests during the mid 20th Century led to a patchwork
mosaic of small, dispersed clearcuts in some areas
(Tinker et al. 2003). Rates of forest harvest declined in
recent years, but exurban development has increased
along with a small but expanding population. Between
1970 and 1999, the GYE experienced a 58 % increase in
population, and between 1950 and 1999, the number of
rural homes in sections bordering public lands increased
from 9942 to 39,944 homes (Gude et al. 2000).
Development has been concentrated in areas that border
the public lands and also on highly productive soils and
lands near water, leading to a disproportionate impact on

@ Springer

riparian corridors (Gude et al. 2006). Exurban develop-
ment is expected to increase with changing demograph-
ics (Gude et al. 2006, 2007; Hammer et al. 2009), but
extensive portions of the GYE remain federally pro-
tected wildlands.

The maritime PNW region is west of the Cascade
Mountain crest, covering ~ 150,000 km? in western
Oregon and Washington. Fire and vegetation dynam-
ics of the region are well documented (e.g., Franklin
and Dyrness 1988; Agee 1993). About 70 % of the
PNW is covered by maritime temperate rainforests,
with montane areas dominated by P. menziesii, Tsuga
heterophylla, A. procera, A. amabils, and A. lasiocar-
pa and coastal forests dominated by P. sitchensis and
T. heterophylla. Conifer forests have dominated
throughout the Holocene (Waring and Franklin
1979; Long et al. 2007; Walsh et al. 2010). Long
disturbance intervals and a mild, moist climate support
high-productivity, high-biomass forests composed of
exceptionally large old trees, which historically cov-
ered much of the region (Waring and Franklin 1979;
Spies et al. 2007). Fire regimes are climate-driven (not
fuel limited), with large stand-replacing fires occur-
ring during rare conditions of extreme drought at
200-500 year intervals, as well as some mixed-
severity regimes (Morrison and Swanson 1990; Agee
1993; Weisberg and Swanson 2003; Halofsky et al.
2011). Temperatures are projected to warm in the next
century, but the forests west of the Cascade Mountain
crest are expected to remain relatively moist (Littell
et al. 2010). Wildfire activity may increase (Rogers
et al. 2011), and bark beetles may shift upward in
elevation (Littell et al. 2010).

Land use and ownership in the PNW is mixed, with
~ 80,000 km? of federal lands primarily in the moun-
tain ranges (Thomas et al. 2006), and privately owned,
agricultural and urban areas in the lowlands. Extensive
timber harvesting began in the 1800 s, accelerating
following World War I with an emphasis on dispersed-
patch clearcut silviculture. Over ensuing decades the
landscape shifted from dominance by mature/old-
growth forests to a patchwork with increasing repre-
sentation of intensively managed young stands (~ 70 %
of area, compared to historic levels of ~20 %; e.g.,
Spies et al. 2007) (Fig. 1b). By the 1990s, however,
federal land management goals shifted to conserving
biodiversity (e.g., the Northern Spotted Owl, Strix
occidentalis caurina) (Thomas et al. 2006). Timber
harvest and conversion of old-growth forests decreased
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Fig. 1 aLarge portions of the Greater Yellowstone Ecosystem
are federally protected wildlands that are subject to natural
disturbance regimes including wildfire and bark beetles, both of
which may be altered by climate change (Photo by M.

precipitously and has remained low on public lands, but
short-rotation timber crops remain dominant on private
forestlands. In addition, the major population centers for
Oregon and Washington are in the region; population
increased by 13 % in the last decade (US Census Bureau
data), and suburban and exurban development are
expanding into forested areas.

G. Turner). b Extensive areas of the forested maritime Pacific
Northwest have been harvested, creating a patchwork mosaic of
managed and unmanaged forests of varying age (Photo by B.
E. Law)

Ecosystem services

Ecosystem services are expected to change in the GYE
and PNW, but the magnitude of change and relative
importance of key drivers-climate, disturbance and
land use—are likely to differ between regions
(Table 1). The GYE is much drier than the maritime
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PNW, and ecosystem services in the GYE are
expected to be more sensitive to projected climate
change. Although a warming climate could potentially
increase net primary production and carbon storage
because tree growth is partly limited by cold temper-
atures and a short growing season in the GYE, any
decrease in effective precipitation could limit the
growth response to warmer temperatures. Moreover,
the frequency and extent of large fires may increase
substantially (Westerling et al. 2011). The interaction
of warmer, drier climate and frequent fire could
compromise tree regeneration and shift portions of the
GYE landscape from forest to nonforest, thus reducing
all ecosystem services dependent on forest cover
(Table 1; Westerling et al. 2011). In contrast, the
moist maritime conditions of the PNW provide some
inertia that could buffer the effects of climate warming
on forests relative to drier inland systems (Littell et al.
2010; Waring et al. 2011). Climate-driven large-scale
shifts from forest to nonforest are therefore unlikely in
the maritime PNW. However, forest management and
exurban development in the PNW affect forest area
and age-class distributions and are a dominant influ-
ence on ecosystem service production (Table 1). In
both regions, future trajectories of ecosystem services
will be influenced by interactions among key drivers,
which may themselves interact with and/or create
landscape patterns. Therefore, anticipating future
conditions is not straightforward.

Supporting services

Forest regeneration after natural or human disturbance
underpins many ecosystem services and may well be a
keystone process. In the GYE, forest regeneration may
be impaired by both warming climate and increased
fire frequency, though land use will likely have less
influence because most of the area is wilderness. In the
PNW, however, moist conditions may mediate the
effects of warming temperatures on tree regeneration
following disturbance (Table 1), but patterns and
intensity of timber harvesting and other land uses will
be very important. In anticipation of impacts from
climate change, thresholds in temperature and precip-
itation likely exist beyond which tree regeneration and
growth are significantly impaired in both regions;
these thresholds are not well characterized at present
but are the focus of ongoing climate research (e.g.,
Coops and Waring 2011). In any event, the impacts of
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climate change and land use on forest regeneration
will be spatially heterogeneous; e.g., the earliest
manifestations of climate limitations on tree re-
establishment will likely be seen on drier microsites
(e.g., south-facing aspects near lower timberline),
while forests may continue to regenerate on more
mesic sites nearby. It would be especially valuable to
quantify and map landscape patterns of forest regen-
eration, as these could identify “hot spots” of other
ecosystem services or locations where thresholds
might be exceeded in the future (Littell et al. 2010).

Landscape heterogeneity is important for tree
regeneration in the GYE and PNW and thus also key
for sustainability of an array of ecosystem services,
including primary production, carbon storage, timber
production and wildlife habitat (Table 1). Even for
tree species with an abundant canopy seedbank (e.g.,
P. contorta), spatial variation in fire severity contrib-
utes to landscape variation in postfire stand structure,
and stands with high postfire tree density accumulate
carbon much more rapidly than areas of low-density
trees (Turner et al. 2004; Turner 2010). For tree
species that lack a canopy seedbank (e.g., P. engel-
mannii, A. lasiocarpa, P. menziesii), spatial heteroge-
neity is even more critical because tree regeneration
depends on nearby seed sources (Fig. 2a). Thus, the
presence of unburned forest patches within a fire, the
survival of individual “legacy” trees, and the complex
shapes of many natural fires enhance tree regeneration.
For example, in locations where the 2002 Biscuit Fire
in Oregon re-burned a 15-year-old postfire forest, the
legacy trees provided the seed source for tree regen-
eration (Fig. 2b; Donato et al. 2009a, b). Even in
species bearing serotinous cones (e.g., P. contorta),
legacy trees may create an important on-site seed
source for tree regeneration following a short-interval
fire. For example, in a short-interval fire in 2007 that
reburned areas that burned in the 1988 fires, nearby
mature legacy trees appeared to augment local seed
supply (personal observations). More generally, it is
necessary to understand the amount and kinds of
heterogeneity that must be maintained to ensure forest
regeneration following disturbances in forests that
differ in regeneration mechanisms of the dominant
tree species.

Because primary production in forested landscapes
is dominated by tree production (Campbell et al.
2004), spatial heterogeneity will influence future
patterns of primary production via its strong effect
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Fig. 2 a Following the 1988 Yellowstone fires, surviving
legacy trees at the top of the ridge were the likely seed source for
these post-fire Douglas-fir trees (Photo from 2011 by M.
G. Turner). b A Douglas-fir dominated forest that experienced
two stand-replacing fires within a short-interval (1987 Silver

on forest regeneration (Table 1). Thus, because
primary production is such a key supporting service,
understanding the importance of spatial heterogeneity
for tree regeneration is among the most important
priorities for research in forested landscapes.

and 2002 Biscuit Fires in southwest Oregon); scattered patches
of legacy mature trees survived both fires and provided
important seed sources for regeneration (Photo from 2005 by
D. C. Donato)

Regulating services
Among regulating services, carbon storage will depend

strongly on rates of primary production and forest
regeneration, as discussed above. However, these three
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services illustrate the potential for ecosystem services
that are likely to exhibit synergies over the long term,
but nonetheless vary in their short-term responses to
changing drivers. Carbon storage should be positively
correlated with tree regeneration and net primary
production over successional time (100-300 years).
However, a reduced interval between successive fires
may have an immediate negative impact on ecosystem
carbon storage but little initial effect on tree regener-
ation. For example, in a 2009 fire in the GYE that
burned a 28-year-old P. contorta forest that had
previously regenerated following a stand-replacing
fire in 1981, tree regeneration was abundant, ranging
from 4,000 to 25,000 stems ha™! (Turner, Romme and
Donato, unpublished data). These tree seedling densi-
ties are typical of postfire regeneration measured
following fires in older forests (e.g., Schoennagel
et al. 2003). However, trees killed by the 1981 fire had
fallen to the forest floor, and much of those large,
woody surface fuels were consumed in the 2009 fire.
The short-interval fire reduced postfire carbon storage
in downed wood by ~57 % relative to postfire sites
that were >150-years-old at the time of burning
(Turner, Romme and Donato, unpublished data).

The regulation of natural hazards, especially large
wildfires, is of increasing concern throughout the west
and in the GYE and PNW (Table 1). Large fires are
not inherently catastrophic for forests in either of these
two regions, where fires were historically large and
severe, and where the biota are adapted to fires of this
kind (Agee 1993; Romme et al. 2011). However, in
some forests in which historical fires were frequent
and low severity, such as southwestern ponderosa pine
(P. ponderosa), fuel structures have been altered by a
century of fire exclusion; large fires in these forests
may burn with uncharacteristic severity and unusual
damage to the biota (Strom and Fulé 2007). Regardless
of forest type and natural fire regime, buildings and
infrastructure become increasingly vulnerable to fire
damage as human communities and infrastructure
expand into fire-prone areas and the climate conditions
conducive to large fires become more common
(Theobald and Romme 2007).

Wildfire is strongly influenced by landscape heter-
ogeneity (e.g., the abundance and connectivity of fuel,
the presence of natural fire breaks, and topographic
variability) when fire weather is not extreme. Sound
landscape planning can reduce hazards to homes and
other structures by placing them in locations where fire

@ Springer

spread and severity are inherently lower under most
weather conditions (e.g., within areas having lower
fuel accumulations) and staying out of especially
hazardous locations (e.g., on slopes or draws facing
the prevailing wind direction and covered by heavy
timber). Strategic placement of timber harvest units or
thinning of dense forests also can alter fire behavior
and reduce vulnerability of homes and infrastructure
(Finney 2001). However, there is little effect of
landscape heterogeneity on fire spread or severity
when conditions are exceptionally dry and windy; at
these times almost any place in the landscape can burn
(Turner and Romme 1994). Understanding anticipated
trajectories of land use and climate change in each
region is necessary to reduce vulnerability to natural
hazards in the GYE and PNW landscapes and to
understand the degree to which landscape pattern can
be managed to enhance resilience to natural hazards.

Forest insects and pathogens also respond strongly to
climate drivers in both regions (Table 1), and regulation
of their impacts in the future is uncertain. Fire frequency
and extent of bark beetle activity both increase with
drought and warmer temperatures. However, feedbacks
between beetles and fire can be disrupted or enhanced by
landscape management, and spatial heterogeneity plays
arole in regulating insects and pathogens. The historical
fire regime in some forests probably dampened the
severity or extent of bark beetle outbreaks, because the
trees in younger postfire forests are too small to support a
bark beetle outbreak. Outbreaks thus were limited to
patches of older forest, especially when surrounded by a
matrix of younger forests. However, where fire exclu-
sion or extensive even-aged timber management have
produced contiguous areas of forests of similar age and
structure, an outbreak beginning in one area can readily
spread throughout a region (Raffa et al. 2008). Main-
tenance or restoration of a natural fire regime, or a timber
harvest program that emulates the natural disturbance
regime (e.g., Cissel et al. 1999), can enhance regulating
services. However, given the magnitude of the projected
changes in key drivers (e.g., climate warming), the
degree to which our understanding of past landscape
dynamics can inform the future is unknown.

Provisioning services
Several key provisioning services—including produc-

tion of timber and wildlife habitat—depend strongly
on supporting services and future drivers. Thus, there
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are important synergies between timber production
and the supporting services of forest regeneration and
primary production: all increase as temperature
increases, if other factors like moisture or increased
fire frequency are not limiting (Table 1). If tree
regeneration fails, however, timber production will
clearly be reduced where natural (versus planted)
regeneration is relied upon for forest restocking. Tree
growth also responds to landscape heterogeneity,
notably the natural spatial variation in soils and
microclimate, and tree regeneration after disturbance
or harvest can be enhanced or impaired by manage-
ment-influenced spatial patterns of biotic legacies
such as seed trees, as described above. Further, there
are tradeoffs between timber harvest and a key
regulating service, namely on-site carbon storage
(Hudiburg et al. 2009; Turner et al. 2011), although
the net consequences for carbon balance will depend
on the fate of the harvested material (Gower 2003).
There also may be tradeoffs between timber produc-
tion and regulation of natural hazards. Larger trees in a
forest stand usually are of greatest economic value for
timber, but also are typically most fire-resistant;
smaller trees and saplings may be the most important
components to remove in the interest of reducing fire
spread and severity (Agee and Skinner 2005).
Production of wildlife habitat interacts with the other
ecosystem services in complex ways (Table 1). There
may be synergies between timber production via
regeneration harvests (clearcutting) and some species
that prefer early-seral habitat, but tradeoffs with species
restricted to old-growth forest. Rapid forest regeneration
to canopy closure (a supporting service) represents a
synergy with closed-forest wildlife habitat, but a
tradeoff for early-seral species (Swanson et al. 2011;
Donato et al. 2012). Spatial heterogeneity will play
particularly important roles for the production of
wildlife habitat, with thresholds in habitat quality,
habitat connectivity, and/or patch size apparent for
many species. For example, the Northern Spotted Owl
and pine marten thrive in large patches of old-growth
forest but may not persist in patches less than a
minimum size (FEMAT 1993). Similarly, species that
depend on early-seral habitat may be limited by
availability (Fontaine et al. 2009). Because different
ecosystem services may interact, it is important to
consider the spatial patterns of multiple ecosystem
services when evaluating sustainability, and to identify
where on the landscape tradeoffs and synergies are most

pronounced. Such prospective studies will aid landscape
managers by identifying areas of key importance (e.g.,
hot spots of synergies) as well as locations where
conflicts among competing ecosystem services may be
pronounced (e.g., hot spots of tradeoffs).

Synthesis

In general, the degree to which landscape patterns can
be managed to sustain multiple ecosystem services in
the face of other changing drivers is not well
understood. Efforts are complicated by synergies and
tradeoffs among different services, some of which
may be subtle or not yet recognized, and by the
inherent spatial variability in ecological characteris-
tics that results from gradients in soils, microclimate,
and local history in all landscapes. The interaction of
drivers may be the greatest source of complexity and
uncertainty. Drivers may interact synergistically or
antagonistically, and thus either amplify or dampen
consequences, but the potential for synergistic inter-
actions to produce unexpected and undesirable con-
sequences deserves particular attention. For example,
as ecological conditions shift across a landscape with
climate change, the effects of land use (forest harvest
and/or exurban development) and disturbance (fire and
insects) may interact with climate to rapidly alter
certain key habitats and areas of optimal productivity
and carbon storage. Further, different landscapes have
unique characteristics and histories and may respond
differently to contemporary and future drivers of
change (Table 1); thus, comparative studies will be
needed. Landscape ecology can make important
contributions to understanding the spatial patterns of
changing drivers and ecosystem services, identifying
when and how spatial heterogeneity can enhance or
compromise ecosystem service production, and spa-
tially targeting management interventions.

Landscape ecology, landscape sustainability
and priorities for future research

We next highlight five general research questions at
the frontier of landscape sustainability science. These
emerge, in part, from our consideration of ecosystem
services in changing forest landscapes, but we phrase
them generally because they can be considered more
broadly in other kinds of landscapes.
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(1) What types and levels of spatial heterogeneity
contribute to sustained production of ecosystem
services and what types and levels do not? Landscapes
are dynamic, all landscapes are unique (Phillips 2007),
and there is no optimal landscape mosaic that will
increase all ecosystem services. Rather, the composi-
tion and configuration of a landscape may enhance or
sustain one bundle of ecosystem services and leave
others vulnerable to degradation. Understanding the
relationships between landscape heterogeneity and the
provisioning of ecosystem services within different
kinds of landscapes is the foundation from which
tradeoffs, synergies, trajectories and management
alternatives can be considered. How are the types
and amounts of spatial heterogeneity that promote
sustainability to be defined? If maintaining a set of
ecosystem services within set bounds is desired, what
kinds of alternative patterns promote those levels of
production?

Spatial heterogeneity, in part through its contribu-
tion to forest resilience, may allow adaptation to future
environmental change and help to sustain some
ecosystem services, but humans often re-scale or re-
shape natural heterogeneity. Given that habitat frag-
mentation may either increase or decrease landscape
heterogeneity (e.g., through exurban development or
forestry), how can land managers determine the types
of spatial heterogeneity that will enhance or impede
production of different ecosystem services? The
science of landscape ecology can help to sort out the
consequences of different kinds of spatial heteroge-
neity, including those that mimic natural patterns, for
ecosystem services.

(2) Where on the landscape do suites of ecosystem
services respond similarly or in opposite directions to
anticipated changes, and what are the mechanisms
behind such synergies and tradeoffs? Understanding
the kind, amount, distribution and patterning of
multiple ecosystem services on the landscape is
critical for evaluating synergies and tradeoffs among
ecosystem services. Prior work that advocated for
ecosystem management (e.g., Christensen et al. 1996)
and multiple-use forest management (e.g., Kessler
et al. 1992) also identified the need for such under-
standing, although not always spatially. By quantify-
ing and mapping different ecosystem services, “hot
spots” of ecosystem services can be readily identified,
along with areas where conflicts over provision of
differing ecosystem services are likely to occur

@ Springer

(Steffen 2009) or thresholds may be exceeded (Raud-
sepp-Hearne et al. 2010). In forested landscapes, hot
spots of ecosystem services often coincide with higher
species and functional diversity (Lavorel et al. 2011).
Furthermore, managing spatially explicit relationships
among different ecosystem services can strengthen
landscape resilience, enhance the provision of multi-
ple services, and help avoid catastrophic shifts (i.e.,
abrupt losses or declines) in ecosystem service
production (Bennett et al. 2009). Thus, in prospective
studies, the consequences of changing drivers for a
variety of different ecosystem services should be
evaluated spatially (e.g., Naidoo et al. 2008; Carpenter
et al. 2009).

(3) What are the implications for resilience and
vulnerability of ecosystem services of anticipated
trajectories of landscape change? Anticipating land-
scape changes and how the benefits people derive from
a region will be affected by such changes are difficult,
but methods from landscape ecology can contribute to
addressing this challenge. Landscape ecology offers
well-developed methods for projecting alternative
landscape patterns probabilistically and for evaluating
the consequences of landscape composition and
configuration for different responses (e.g., Perry and
Enright 2006; Gude et al. 2007; Berland et al. 2011).
These methods should be incorporated into studies
that explore future scenarios for ecosystem services,
and future landscape patterns should be evaluated in
concert with changes in other key drivers. Trajectories
of change that lead to sustained or enhanced ecosys-
tem services can then be distinguished from those that
cause ecosystem services to decline.

(4) To what degree can landscape pattern be
purposefully managed to enhance the resilience of
ecosystem services in the face of changing drivers?
This, perhaps, is one of the largest challenges for
landscape sustainability—maintaining the capacity for
the landscape to produce ecosystem services in the face
of change. Just how much leverage can be gained from
“smart” management of land use or strategic inter-
ventions to alter landscape patterns? Understanding the
mechanisms behind synergies and tradeoffs among
ecosystem services can help identify ecological
leverage points where small management investments
can yield substantial benefits (Bennett et al. 2009). But
how much can be gained by manipulating landscape
patterns, and under what conditions will the magnitude
of changes in some drivers overwhelm the importance



Landscape Ecol

of landscape heterogeneity? Landscape managers can
intervene in some drivers to sustain ecosystems
services (e.g., land use planning can minimize effects
on biodiversity) but have little influence on others (e.g.,
society may have to simply adapt to climate-induced
changes in fire regimes). Managers must know when
landscape management can and cannot mitigate unde-
sirable changes.

(5) How well will understanding of past landscape
dynamics and ecosystem services inform the future?
For many regions, predicted future conditions differ
vastly from past and current conditions. Some studies
suggest that “no-analog” communities will develop in
the future (Williams and Jackson 2007), and others
indicate that disturbance frequency may exceed that
documented throughout the Holocene (Westerling
et al. 2011). Concepts such as the historical range of
variability (HRV) (Keane et al. 2009, Weins et al. in
press) provide a baseline characterization of past
landscape structure, function, and dynamics, from
which we will be able to detect when a given
landscape has moved beyond the historical condition
as a result of changing climate, disturbance, and land
use drivers. However, the historical condition may not
be a suitable restoration target if these drivers move
landscapes well outside their HRV (Thompson et al.
2009. Will the relationship between future landscape
patterns and production of ecosystem services change
fundamentally from that of the past? Can approaches
from landscape ecology help scientists and managers
anticipate or avoid undesirable surprises?

Recommendations and conclusions

Assuring the continued provision of ecosystem ser-
vices in the face of environmental change—i.e.,
maintaining functional landscapes—is one of the most
pressing challenges in sustainability science and
contemporary landscape ecology. Although many
questions remain to be answered, there are actions
that can be implemented now to maintain ecosystem
services. A practical first step, as the examples we
have described from the GYE and PNW regions
indicate, is to conserve the inherent spatial heteroge-
neity that characterizes forest landscapes, even (or
especially) after disturbances. Following fire, for
example, retaining unburned patches and legacy trees
(i.e., avoiding the practice of burning these out during

fire suppression actions, and thereby destroying key
seed sources for forest regeneration) will serve to
maintain the natural heterogeneity that provides
important insurance in the face of unpredictable
change, enhances biodiversity and affords a greater
variety of future silvicultural options to address
evolving land use objectives and environmental con-
ditions. Second, land planners and resource managers
are already striving to reduce the vulnerability of
human populations and critical infrastructure to nat-
ural hazards such as wildfire, via land use planning and
strategic placement of fuels treatments, and insights
from landscape ecology could have direct application
for such adaptive strategies. Spatial patterns of
development and mitigation treatments directly influ-
ence the risk of human life and infrastructure to natural
hazards, and different landscape patterns can increase
or lower the cost of protection. Third, forest land-
scapes should be strategically monitored to detect
early-warning indicators of change, especially in
regions where thresholds may be exceeded (e.g.,
Scheffer et al. 2009). In particular, studies should
focus on the size, frequency and severity of multiple
disturbance types; the nature and quantity of post-
disturbance vegetation; and the dynamics of upper and
lower treeline. We hope the perspectives presented
here catalyze additional discussion of these ideas, new
research designed to contribute to these pressing
challenges, and active steps toward enhancing sus-
tainability of the landscapes on which society depends.
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